You are here

Rachel Hazan, PhD

Professor of Pathology
Albert Einstein College of Medicine
Bronx, New York

Current Research

Goal: To understand what drives tumor growth and survival in order to prevent the spread of breast cancer.

Impact: Once breast cancer has spread to other tissues it is incurable. Dr. Hazan’s lab has shown that the loss of an enzyme that protects cells from oxidative damage—which occurs as a result of normal cell processes, but even more so in cancer cells—leads to more aggressive cell behavior and metastasis. Her lab is now focused on understanding how this occurs to identify targets that can be blocked to prevent metastasis.

What’s next: In the coming year, Dr. Hazan’s group will study how the loss of activity of the enzyme glutathione peroxidase 2 (GDx2) drives early stages of cancer formation and progression.

In order for tumors to spread to other tissues—a process called metastasis—tumor cells have to travel through the bloodstream or the lymphatic system. Dr. Hazan has been investigating how breast cancer cells acquire the ability to spread in order to discover ways to prevent metastasis. Her research has revealed that loss of an enzyme called Glutathione Peroxidase 2 (GDx2) results in increased tumor blood vessel formation and promotes the spread of breast cancer cells. The team will now focus on the molecular pathways involved to identify new targets for prevention or treatment of metastasis.

Full Research Summary

Research area: Investigating how the spread of breast cancer (metastasis) occurs in order to discover ways to prevent it from occurring.

Impact: Metastasis is the main cause of death from breast cancer. In order to prevent breast cancer cells from invading distant tissues in the body, researchers must first determine how the cancer cells acquire the ability to spread. Advanced breast tumors are known to create their own vascular systems to facilitate this process, often disguising themselves as vascular cells. Dr. Hazan is investigating the events that lead to excessive increase in blood vessel formation that feed the cancer with oxygen and nutrients—work that could reveal strategies for blocking metastasis.

Current investigation: Dr. Hazan is studying an enzyme, glutathione peroxidase 2 (GPx2), which when lost in breast cancer cells makes them metastatic. Insight into the effects of GPx2 will yield a better understanding and ultimately improved treatments for metastatic breast cancer.

What they’ve learned so far: Dr. Hazan’s team has mapped out the cascade of effects that is initiated by the loss of GPx2 activity.

What’s next: In the upcoming year, the team plans to investigate how the loss of GPx2 activity drives early stages of cancer formation and progression. The effects of the loss of GPx2 function is especially striking in HER2 and triple-negative breast cancers (TNBC). Using HER2 and TNBC models, the team aims to determine if increasing GPx2 activity can have the opposite effect—to reduce oxidative stress, decrease vasculature formation, and slow tumor progression and metastasis.


Dr. Rachel Hazan received her PhD from George Washington University in 1990. She performed her thesis work under Dr. Joseph Schlessinger, where she studied Her2 signaling in breast cancer, and was the first to map Her2 phosphorylation sites. She then joined Dr. Gerald Edelman, a Nobel laureate at Rockefeller University and Scripps Research Institute to study adhesion molecules and their regulation in neuronal and epithelial cells. This served as a basis for her ongoing work on cadherin adhesion molecules and their role in breast cancer dissemination. In 1994, she joined Memorial Sloan Kettering Cancer Center, where she initiated seminal studies on the role of cadherin switching in breast cancer progression. In 1997, she became Assistant Professor at the Mount-Sinai School of Medicine, and is presently Professor of Pathology at the Albert Einstein College of Medicine. Dr. Hazan has been studying the role of adhesion in invasion and epithelial to mesenchymal transition leading to metastasis. She showed that N-cadherin activates cancer spread by sustaining activation and signaling of the Fibroblast Growth Factor Receptor. Dr. Hazan discovered a variety of signaling pathways that contribute to metastasis and has so far elucidated key signaling modules including the MAPK, AKT and cell cycle regulators as critical promoters of metastasis. Her work uses laboratory models, cell culture systems and validation in clinical breast specimens. These models serve as a platform to elucidate mechanisms of metastatic spread with the goal of identifying pivotal targets for therapeutic application.

Grid Researcher Headshot - Hazan R

BCRF Investigator Since


Donor Recognition

The Neil and Jane Golub Award

Area(s) of Focus