Alan D'Andrea, MD
Boston, Massachusetts
Alvan T. and Viola D. Fuller-American Cancer Society Professor
Radiation Oncology
Scientific Director, Molecular Diagnostics Laboratory
Dana-Farber Cancer Institute
Harvard Medical School
Boston, Massachusetts
To identify novel strategies to sensitize triple-negative breast cancers to treatment with PARP inhibitors.
Triple-negative breast cancer (TNBC) is a particularly aggressive form of breast cancer that is highly prone to metastasis (spreading to distant tissues). PARP inhibitors are helpful for the treatment of some TNBCs that have an underlying defect in DNA repair. However, after initially responding to this treatment, TNBC tumors often acquire resistance. There is a lack of additional therapies available for PARP inhibitor resistant tumors. Therefore, Dr. D’Andrea is developing ways to extend the use of PARP inhibitors for the treatment of TNBC patients. He hopes to discover novel combinations of drugs or methods to sensitize tumors to PARP inhibitors thereby increasing their efficacy and decreasing treatment resistance.
Dr. D'Andrea and his colleagues have shown that combining PARP inhibitors with other targeted drugs that also block DNA repair can sensitize TNBC tumor cells to PARP inhibitors. They have also identified two drug targets which they have shown contribute to the aggressive behavior and resistance to PARP inhibitors in some TNBCs: TRIP13 and POLQ. Preliminary data from TNBC laboratory models indicates that inhibitors of these targets can overcome PARP inhibitor resistance and re-sensitize the tumor cells to the drug. With BCRF support, Dr. D’Andrea has successfully demonstrated that the naturally occuring antibiotic, novobiocin, effectively kills TNBC tumors in laboratory models.
Dr. D’ Andrea and his colleagues will continue to investigate novobiocin and other agents that can kill tumors that have become resistant to PARP inhibitors. In the coming year, his team will initiate a phase 1 clinical trial to test the combination of novobiocin with PARP inhibitors in patients with TNBC tumors that are resistant to PARP inhibitors.
Fifteen years ago, Alan D’Andrea began to study the molecular pathogenesis of Fanconi Anemia (FA), a human genetic disease characterized by bone marrow failure, cancer susceptibility, and cellular hypersensitivity to DNA crosslinking agents. Dr. D’Andrea’s laboratory contributed significantly to the elucidation of a new DNA repair pathway, the FA pathway, and demonstrated that one of the FA genes (FANCD1) is identical to the breast cancer gene, BRCA2. Biomarkers from this pathway are useful in predicting the chemotherapy and radiation sensitivity of breast, gastrointestinal, ovarian, and lung tumors.
Dr. D’Andrea is internationally known for his research in the area of DNA damage and DNA repair. He is currently the Fuller-American Cancer Society Professor of Radiation Oncology at Harvard Medical School and the Director of the Center for DNA Damage and Repair at the Dana-Farber Cancer Institute. A recipient of numerous academic awards, Dr. D’Andrea is a Distinguished Clinical Investigator of the Doris Duke Charitable Trust, and a Fellow of the American Association for the Advancement of Science. He is the recipient of the 2001 E. Mead Johnson Award, the highest award in Pediatric Research, and the 2012 G.H.A. Clowes Memorial Award from the American Association for Cancer Research. He is also a member of the National Cancer Institute's Board of Scientific Counselors in Basic Sciences.
2011
The Clinique Awards
When you give to BCRF, you're funding critical hours in the lab. More time for research means longer, healthier lives for the ones we love.